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FREE-CONVECTION HFEAT TRANSFER IN A CLOSED THREE-DIMENSIONAL CAVITY

Yu. A. Korolenko and I. V. Esina UDC 536.25

This paper gives the results of an investigation of free convection from a cylindrical
heater centrally or eccentrically positioned in a cavity in the shape of a cylinder or
parallelepiped. It is shown that the position of the heat source within the closed cavity
has no effect on heat transfer so long as the boundary layers on the heat-transfer sur-
faces can develop freely. The heat transfer can be calculated as for a centrally situated
heater. The results of investigations of free convection within a cylindrical or parallele-
piped-shaped cavity with a central heaterare correlated in the form of equations of the type
NU = f(Ra®). It is characteristic that the exponent is a variable that depends on the Ray-
leigh number and is greater than 0.25 — the value obtained by using a boundary-layer model
for the investigation of free convection.
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INVESTiGATION OF INTEGRAL EMISSIVITY OF NICKEL NEAR CURIE POINT

V. Ya. Cherepanov UDC 535.234:538.221

The temperature dependence of the hemispherical integral emissivity € of nickel was in~
vestigated by the modulation method [1l]. The specimen is surrounded by a radiation shield
and is placed in a vacuum chamber. Shield temperature oscillations around a mean value are
imposed. The specimen is supplied with power, which oscillates around a mean value in count~-
erphase with the shield temperature oscillations. At a certain value of the amplitude pgge
of the power oscillations the amplitude of the temperature oscillations of the specimen be-
comes zero., In this case the emissivity of the specimen can be determined from the equation

o= Posc
40ST38,
where ¢ is the Stefan—Boltzmann constant; S, surface area of the specimen; To, mean tempera-
ture of the shield; 08y, amplitude of the shield temperature oscillations.

The denominator in the equation depends on the shield heat regime (parameters Tg and 6g),
which can be kept constant for different values of To, the mean temperature of the specimen.
The nature of the temperature dependence of € is determined in this case by the function
Pose = Posc(To) . This ensures high sensitivity of the method to change in €.

The measurements were made on the apparatus described in {1]. A more uniform tempera-
ture field in the specimen was obtained by indirect heating with an auxiliary heater.

Near the Curie point of the specimen an anomalous value of the amplitude of the heater
power oscillations required to suppress the specimen temperature oscillations was found.
This confirms the anomalous nature of the temperature dependence of e in the region of the
phase transition,

Numerical values of the emissivity e of nickel at 300-450°C were obtained. The results
of other investigations, particularly [2], where an anomalous value of ¢ was found for
nickel and iron close to the Curie point, are cited and discussed.
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SOLUTION OF PROBLEM OF FLOW STABILIZATION IN LAMINAR NATURAL CONVECTION

E. P. Lippo UDC 536.25

A stationary stabilized flow in laminar natural convection denotes a hypothetical move-
ment of the medium in which the flow parameters — velocities and tempeatures — are indepen-
dent of the coordinates measured along the direction of the flow and of the time. It follows
from the definition that the term "stabilized flow" is identical with the term "uniform flow,"
i.e., motion without acceleration in the direction of propagation.

We consider a plane laminar flow of incompressible medium with constant thermophysical
properties. In correspondence with the above definition the Navier—Stokes equations take the
form

d2y dt du \?
—_y— oty =0; —A—— +p|— | =0
L + pPatt— fy =0 — A g +u( dy)

The solution of this system is given by the following functions:
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These solutions reveal that stabilization of the flow in laminar natural convection oc-
curs in cases where a heated body moves along with the medium under the action of the repul-
sive buoyancy force, and the fluid flows over the outside of the body. In other cases sta-
bilization does not exist.

If u is put equal to O in the above system of equations, the functions for u and t at
u =0 will satisfy the system for any boundary conditions. This means that a partial solu-
tion is obtained for the problem posed by O. A. Ladyzhenskaya, viz., the solution of the
boundary-value problem for the Navier—Stokes equations may tend to the solution of the
boundary-value problem for an ideal fluid when the viscosity u tends to zero irrespective of
the kind of boundary conditions.
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HEAT-CONDUCTION PROBLEM FOR A THREE-LAYERED PLATE

F. V. Semerak and 0. K. Romanchuk UDC 536.24.02

The temperature field in a three-layered plate of asymmetric structure, whose side sur-
faces are thermally insulated, is found.

Initially the outer layers of the plate have temperature to, and the middle layer t,.
In this case the initial temperature of the plate, as a unit whole, can be put in the form

fleco= to+ (ty — to) S_(x — x)+ilo — 1) S_(x — xa),
where S_(x) is an asymmetric unit function [1]; T is the time.

The thermophysical characteristics of the system are assigned in a similar way.
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To determine the temeprature field in the plate we have the differential heat-conduction

equation [2]
: APy 2t«]—c(x) (0 2
5;[ () x| o at '

where A(x) is the thermal conductivity; c(x), specific heat; p{x), density.

Substituting the expressions for the thermophysical characteristics, assigned with the
aid of asymmetric unit functions, into the above equation and using the relation involving
multiplication of asymmetric delta functions by the asymmetric unit functions, we obtain an
equation with discontinuous coefficients:

o2 1 11 a .. ‘ ot b a2
TN P

a, o a, =%y

Here §_(x) is the Dirac asymmetric delta function [1, 2];

Nx)=8_(x—x)—8 _(x—i5); d¥= = .
ke
Quantities with the subscript 0 relafé to the outer layers, and those with 1 to the mid-
dle layer.

Applying the Laplace time transformation to the obtained equations and then multiplying
successively the right and left sides of this equation by S_(x — xz) and S_{x — x,), we ob-
tain a system of two equations with constant coefficients for the new unknowns U; = tS_{(x —
x1) and Uz = tS (x — x2). Then, substituting the solutions for U, and U, into the initial
equation we find the temperature image t.

Conversion to the original is effected by the well-known Vashchenko—Zakharchenko expan-
sion theorem.

The temperature distribution in the plate in relation to the coordinate (thickness) and
time was also investigated. The results are given in the form of graphs.
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MATHEMATICAL MODEL OF COMPRESSION AND EXPANSION OF A VAPOR-GAS—LIQUID MIXTURE

V. P. Grigorov UDC 532.555+532.556+533.24+533.51+531.01

An analysis of the special features of compression and expansion of a vapor—gas—liquid
mixture shows that these processes are accompanied by mass—~transfer interaction between the
vapor—gas (compressible) phase and the liquid (incompressible phase) due to condensation of
the vapor (evaporation of liquid) and solution of the gas in the liquid. The composition of
elements connected to the compressible phase or separated from it differs from the composi-~
tion of the acting elements. The same feature is observed when the pressure of the mixture
is altered solely by external heat transfer. The difference in the composition of the con-
nected and separated elements from the composition of the acting elements leads to a change
in composition and, hence, to a change in the thermodynamic properties of the compressible
phase.

The aim of the work was to devise a mathematical treatment for the description of the
compression and expansion of vapor—gas—liquid mixtures which takes into account the variation
of the mass and the composition of the vapor—gas phase of the mixture.



This problem was solved by using the following assumptions: 1) the vapor—gas—liquid mix-
ture is in heat- and mass—transfer equilibrium; 2) the vapor and gas conform to the ideal
gas laws; 3) the liquid is incompressible; 4) the compression chamber is airtight. The solu-
bility of the gas in the liquid was taken into account by the volume solubility coefficient,
which is equal to the volume of gas dissolved in unit volume of liquid referred to the tem—
perature and partial pressure of the gas.

Equations for the pressure and temperature in relation to volume and external heat trans-
fer were obtained by using the laws of conservation of matter and energy.

If during the compression (expansion) the change in temperature is slight and the vapor
density is low in comparison with the liquid density, the change in partial pressure of the
gas pg 1s given by the equation

Pg(V+ %)= Gy (Vi + %V )= const,

where V is the volume of the vapor—gas phase; Vj, volume of the liquid phase; x, coefficient
of volume solubility of the gas in the liquid; 1, initial point of the process.

The structure of (1) is analogous to the structure of the equation pV = const, which
represents the isothermic compression of a gas. A comparison of these equations indicates
that in the presence of undissolved gas the liquid volume xVy obeys the gas-compression laws.
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TWO-DIMENSIONAL TEMPERATURE WAVES IN A MEDIUM WITH A FINITE HEAT-TRANSFER
RELAXATION PERIOD

0. N. Shablovskii UDC 536.2.01

In the (x, y) plane at temperature To = const there is a motionless medium in which heat-
transfer processes are given by the relations
Ty + o¥T1e = (ATx)= + (ATy)y, A =doexp (IT),
ym const, ¢/h=xmconst, yx=n? wn=l,
Ou, v, y=xu+yo—T(x, 4, Y-+ Mt, Tx=u, T,=v, M == const,
x=0, y=0, u=rcosq, v=rsing, d(z, y)d(r, 9 *0,
x(r, @, ) =6, cos@—r"18gsin®, y(r, 9 ¥) =8, sin ¢ + r~1 0 cos .
Here T is the temperature; t, time; c, volumetric specific heat; A, thermal conductivity of

the medium; Yy, heat-transfer relaxation period; 6, new required function obtained by a Le-
gendre transformation of the initial equation. . The equation obtained for 8(r, ¥, t) is:

0,r 4+ r 30, + r-zew + n2(2r2 eq,, O,gew—r‘ ’6,-,-0%‘ — r“B,-Oft —
—r-zewef, - 2r"9.,6,19w) + (n%0¢s + 12— xM -+ %94) 1= 0,
671 = r=10,8,r 4 r~0p,Bgq — r 402 + 2r~980,, —r~ ],
a solution is obtained by the method in [1] in the form of a convergent series,

0(r, @ )= X a™ (¢, )" a® = —To+ M,

n=0

t ”
a® (9, 1) = wet + F (@), a® (@, ) =CD (@) (t+70)  exp (——;. 2 ) %o = A(f+f"),

- t 1 xt
alM (@, 1) =(t+T)Ty > C® () exp (_Z;‘)—i- ey (t+ T0) C1?) (@) S exp (—n,—) +

¢ 1 1 b _L__“__L__) _ﬁ_(_L_____J__ﬁ] .11)
+ L [”1’+”=<’;— t+‘r.,)+ 2 (Tg rwr) TS T """(\nz ’
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S @ ,,=Y:M>_d,, b= (O,
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t+T°

2by=— Un COP—x(f + ") C® CP +2r(CH) — 4nC® CR);
—bg=2m2(f + [ )COCE + 2 (F 4+ [V)COPR, b= (' + "R (CDHP,

and a recurrent formula for a(k+2)(m, t), k 2> 0 is found. The movable boundary of the re-
gion is assigned parametrically:r=ry(B. ), 9=9p(B, t), theonly restriction being that the con-
ditions t=0: (B, 0)=0, 9 (B, 0) =9, =9 are satisfied; hence it is easy to obtain the law of
motion of the boundary in the physical plane. The equation of the temperature wave front

r = 0 is represented in the form

x4 (9, ) = (wot + f)cos@ —F sing, yy (e, 1) = (wet + f) sin@ + [ cos @,

the boundary of the region and the wave front coincide at t = 0, and their initial form can
be altered by assignment of f(®). At t = 0 the boundary temperature is constant and equal
to To, and subsequently varies according to the law o

Tb (Bv 1) — To + (X cos ¢ + y sin @)brb — (wol + fb) Iy — 20(k+2) (q)b. t) rg"}‘?n
h=0

which is determined within the framework of this class of solutions by a choice of the arbi-
trary function c(k+2)(¢), k > 0.

When C® (@) =0, a(f+f)>0 for this class of temperature fields the ''gradient catastrophe"
does not occur.

In the special case of C¢*+?)(q) = const(®+?), (@)= const, 7,=rp(f) the obtained solution gives the
nonstationary uniform temperature field with cylindrical symmetry, T = T(r, t).

The literalSubécript denotes partial differentiation: f is the valueof the function on the
wave front, b is the value on the boundary of the region.
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MECHANISM OF HEAT AND MASS TRANSFER IN ZONE OF CONTACT OF A
HEAT-PRODUCING ELEMENT WITH SURFACE OF SUBLIMING SOLID CRYQAGENT

A. B. Grachev and A. V. Orlov UDC 536.422.4

Conductive supply of heat from a plane vapor-impermeable heat-producing element to a por—
ous solid cryoagent produces a complex heat- and mass-transfer process in a zone of contact.
As a first approximation we assume that the heat flux qo is transmitted to the solid cryo-
agent only through contact "spots'" and leads to its sublimation from the free surface of the
pores. The temperatures of the heat-producing element and the cryoagent on their contact
surface are equal. Solving the heat-conduction equation for a porous substance with due re-
gard to internal heat sinks due to sublimation [1}, we obtain an equation representing the
temperature distribution on the surface of the heat-producing element in the contact zone Ty

—r Ja (l)
T =T - —
T A (=W
where

r

S 0 ST} ¢
A-.3.704 == ; — =, (2)
e PV RT, P ( RTO)

Owing to the hydraulic resistance of the pores to the vapor flow the pressure under the
surface of the heat-producing element increases, and the flux passes not only through the zone

1505



of direct contact, but occupies a layer of thickness 8. The sublimation temperature To of
the cryoagent comes into equilibrium with the local vapor pressure p.

The value of § can be determined from the heat-balance equation for the layer of cryo-
agent through which the vapor flows, provided that this flow is laminar:

8= 0,273 dll=MVA  *r (3)
S kv

The distribution of vapor pressure under the surface of the heat-producing element is
found from the solution of the D'Arcy equation [2], and for the case of outflow of vapor at
subsonic velocity from the free surface of the cryoagent,has the form

=P+ (4)

R
G RTO[Rﬁ—p Ry *5(P2'—_)]
+ £
ky rn

25 vz ( V—Ra )

In the presence of a zone of sonic outflow the pressure distribution can be expressed as
follows:

= K (VZa -l)
pz ( 2p° )2+ qo RTO Rl2‘__92 - ,';oc(a —_ l)Rz + lGRn+ V2 k(k+ 2) kd)po 1 ( J ch GRH Ine. (5)
21k kg rm T 4 c %, (V— R,,)

The coefficient a is determined from the equation of material balance of the fluxes on
the free surface of the cryoagent

— Ry
. — Kl (V2a _)
i1-622+-1—a%= V;G . .
T e

(6)

The temperature dependence of the saturated vapor pressure can be used to determine Tg
and from Eq. (1) the temperature Ty of the surface of the heat-producing element.

A comparison of the theoretical and experimental data shows that the disagreement does
not exceed 5%.

NOTATION

p, coordinate' Ry, radius of heat-producing element; po, vapor pressure; do, I, S ,
equivalent pore diameter, voidage, and specific surface, respectively, of porous cryoagent;
r, 4, k, heat of sublimation, molecular weight, and adiabatic exponent; c, local sound veloc-
ity; R, universal gas constant; prs k¢, density and permeability of porous cryoagent; Ar,
Ay, thermal conductivities of cryoagent and vapor; Ko(x), Ki{(x), Hankel functionms.
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